Loading...
 

Hodge Club

The Hodge Club is the seminar for Hodge Institute graduate students and postdocs. That means we're interested in Algebra, Geometry, Topology, Number Theory, and all possible combinations and derivations of the four. Before the 2016/17 academic year, the Hodge Club was known as the Geometry Club.

We meet every Friday at 14:00pm, where we take it in turn to present a topic of interest to the rest of the group via Zoom, in pertuity as the situation currently stands. Talks tend to be fairly informal and provide excellent practice for conference talks in front of a friendly audience. You can find our current schedule and a historical list of talks below.

We send out an initial email about the current week's talk, and follow it up closer to the time. Details for accessing the virtual meeting will be contained in these emails.

The Hodge Club for the 2020 - 2021 academic year is organised by Ben Brown and Sebastian Schlegel Mejia.

Current Schedule of talks for 2020/21


Semester 1

2nd October, 2020
Social & Introductory Meeting

Abstract: N/A.

9th October, 2020
Ben Brown
Compactifying Hypertoric Manifolds via Symplectic Cutting

Abstract: A theorem of Delzant asserts a correspondence between a class of convex polytopes and symplectic toric manifolds, which lets us study them either geometrically or combinatorically. This construction can be extended to the hyperkähler case giving rise to hypertoric manifolds, first introduced by Bielawski and Dancer, and their analogues to the toric case forming the subject of Proudfoot’s thesis. A key difference however between the two cases is that the hypertoric ones are non-compact, which is reflected combinatorially too, with the half-space arrangements delimiting the polytopes are replaced by hyperplane arrangements. This non-compactness creates new problems if, for example, one wishes to consider the vector space of holomorphic sections on a hypertoric manifold for the purposes of geometric quantisation, given that this vector space is now infinite-dimensional.

This talk will go through how one can compactify these hypertoric manifolds via a construction called symplectic cutting, thus circumventing this dilemma. Firstly though we shall review the construction of the toric and hypertoric manifolds considered, along with their respective half-spaces and hyperplane arrangements. The compactification is also reflected in the hyperplane arrangement, by introducing half-spaces in a combinatorially manner, forming an assortment of polytopes that we call a polyptych. Now finally compact, we can apply localisation formulae to extract topological information about these compactified manifolds.

16th October, 2020
TBC
TBC

Abstract: To be confirmed.

23rd October, 2020
TBC
TBC

Abstract: To be confirmed.

30th October, 2020
TBC
TBC

Abstract: To be confirmed.

6th November, 2020
TBC
TBC

Abstract: To be confirmed.

13th November, 2020
TBC
TBC

Abstract: To be confirmed.

20th November, 2020
TBC
TBC

Abstract: To be confirmed.

27th November, 2020
TBC
TBC

Abstract: To be confirmed.

4th December, 2020
TBC
TBC

Abstract: To be confirmed.

Historical schedules

Hodge Club 2019/20
Hodge Club 2018/19
Hodge Club 2017/18
Hodge Club 2016/17
Geometry club 2015/16
Geometry club 2014/15
Geometry club 2013/14
Geometry club 2012/13
You can also visit the old Geometry club website for more historical schedules.

Page last modified on Tuesday September 29, 2020 23:49:12 UTC